Android教程網
  1. 首頁
  2. Android 技術
  3. Android 手機
  4. Android 系統教程
  5. Android 游戲
 Android教程網 >> Android技術 >> 關於Android編程 >> Android應用開發:網絡工具——Volley(二)

Android應用開發:網絡工具——Volley(二)

編輯:關於Android編程

引言

在Android應用開發:網絡工具——Volley(一)中結合Cloudant服務介紹了Volley的一般用法,其中包含了兩種請求類型StringRequest和JsonObjectRequest。一般的請求任務相信都可以通過他們完成了,不過在千變萬化的網絡編程中,我們還是希望能夠對請求類型、過程等步驟進行完全的把控,本文就從Volley源碼角度來分析一下,一個網絡請求在Volley中是如何運作的,也可以看作網絡請求在Volley中的生命周期。


源頭RequestQueue


在使用Volley前,必須有一個網絡請求隊列來承載請求,所以先分析一下這個請求隊列是如何申請,如果運作的。在Volley.java中:

    /**
      * Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.
      *
      * @param context A {@link Context} to use for creating the cache dir.
      * @param stack An {@link HttpStack} to use for the network, or null for default.
      * @return A started {@link RequestQueue} instance.
      */
     public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
         File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);

         String userAgent = "volley/0";
         try {
             String packageName = context.getPackageName();
             PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
             userAgent = packageName + "/" + info.versionCode;
         } catch (NameNotFoundException e) {
         }

         if (stack == null) {
             if (Build.VERSION.SDK_INT >= 9) {
                 stack = new HurlStack();
             } else {
                 // Prior to Gingerbread, HttpUrlConnection was unreliable.
                 // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
                 stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
             }
         }

         Network network = new BasicNetwork(stack);

         RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
         queue.start();

         return queue;
     }

     /**
      * Creates a default instance of the worker pool and calls {@link RequestQueue#start()} on it.
      *
      * @param context A {@link Context} to use for creating the cache dir.
      * @return A started {@link RequestQueue} instance.
      */
     public static RequestQueue newRequestQueue(Context context) {
         return newRequestQueue(context, null);
     }

通常使用的是第二個接口,也就是只有一個參數的newRequestQueue(Context context),使stack默認為null。可以看到我們得到的RequestQueue是通過RequestQueue申請,然後又調用了其start方法,最後返回給我們的。接下來看一下RequestQueue的構造方法:

     /**
      * Creates the worker pool. Processing will not begin until {@link #start()} is called.
      *
      * @param cache A Cache to use for persisting responses to disk
      * @param network A Network interface for performing HTTP requests
      * @param threadPoolSize Number of network dispatcher threads to create
      * @param delivery A ResponseDelivery interface for posting responses and errors
      */
     public RequestQueue(Cache cache, Network network, int threadPoolSize,
             ResponseDelivery delivery) {
         mCache = cache;
         mNetwork = network;
         mDispatchers = new NetworkDispatcher[threadPoolSize];
         mDelivery = delivery;
     }

     /**
      * Creates the worker pool. Processing will not begin until {@link #start()} is called.
      *
      * @param cache A Cache to use for persisting responses to disk
      * @param network A Network interface for performing HTTP requests
      * @param threadPoolSize Number of network dispatcher threads to create
      */
     public RequestQueue(Cache cache, Network network, int threadPoolSize) {
         this(cache, network, threadPoolSize,
                 new ExecutorDelivery(new Handler(Looper.getMainLooper())));
     }

     /**
      * Creates the worker pool. Processing will not begin until {@link #start()} is called.
      *
      * @param cache A Cache to use for persisting responses to disk
      * @param network A Network interface for performing HTTP requests
      */
     public RequestQueue(Cache cache, Network network) {
         this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);
     }
RequestQueue有三種構造方法,通過newRequestQueue(Context context)調用的是最後一種。創建了一個工作池,默認承載網絡線程數量為4個。而後兩種構造方法都會調用到第一個,進行了一些局部變量的賦值,並沒有什麼需要多說的,接下來看start()方法:

     public void start() {
         stop();  // Make sure any currently running dispatchers are stopped.
         // Create the cache dispatcher and start it.
         mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
         mCacheDispatcher.start();

         // Create network dispatchers (and corresponding threads) up to the pool size.
         for (int i = 0; i < mDispatchers.length; i++) {
             NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                     mCache, mDelivery);
             mDispatchers[i] = networkDispatcher;
             networkDispatcher.start();
         }
     }

首先進行了stop操作,將所有的執行者全部退出,從而確保當前沒有任何正在工作的執行者。然後主要的工作就是開啟一個CacheDispatcher和符合線程池數量的NetworkDispatcher。首先分析CacheDispatcher。


CacheDispatcher緩存操作


CacheDispatcher為緩存隊列處理器,創建伊始就被責令開始工作start(),因為CacheDispatcher繼承於Thread類,所以需要看一下它所復寫的run方法:

     @Override
     public void run() {
         if (DEBUG) VolleyLog.v("start new dispatcher");
         Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

         // Make a blocking call to initialize the cache.
         mCache.initialize(); //初始化一個緩存

         while (true) {
             try {
                 // Get a request from the cache triage queue, blocking until
                 // at least one is available.
                 final Request request = mCacheQueue.take(); //在緩存序列中獲取請求,阻塞操作
                 request.addMarker("cache-queue-take");

                 // If the request has been canceled, don't bother dispatching it.
                 if (request.isCanceled()) { //若該請求已經被取消了,則直接跳過
                     request.finish("cache-discard-canceled");
                     continue;
                 }

                 // Attempt to retrieve this item from cache.
                 Cache.Entry entry = mCache.get(request.getCacheKey()); //嘗試在緩存中查找是否有緩存數據
                 if (entry == null) {
                     request.addMarker("cache-miss"); //若沒有則緩存丟失,證明這個請求並沒有獲得實施過,扔進網絡請求隊列中
                     // Cache miss; send off to the network dispatcher.
                     mNetworkQueue.put(request);
                     continue;
                 }

                 // If it is completely expired, just send it to the network.
                 if (entry.isExpired()) { //若請求已經過期,那麼就要去獲取最新的消息,所以依然丟進網絡請求隊列中
                     request.addMarker("cache-hit-expired");
                     request.setCacheEntry(entry);
                     mNetworkQueue.put(request);
                     continue;
                 }

                 // We have a cache hit; parse its data for delivery back to the request.
                 request.addMarker("cache-hit");
                 Response response = request.parseNetworkResponse(
                         new NetworkResponse(entry.data, entry.responseHeaders)); //請求有緩存數據且沒有過期,那麼可以進行解析,交給請求的parseNetworkReponse方法進行解析,這個方法我們可以在自定義個Request中進行復寫自定義
                 request.addMarker("cache-hit-parsed");

                 if (!entry.refreshNeeded()) { //如果請求有效且並不需要刷新,則丟進Delivery中處理,最終會觸發如StringRequest這樣的請求子類的onResponse或onErrorResponse
                     // Completely unexpired cache hit. Just deliver the response.
                     mDelivery.postResponse(request, response);
                 } else { //請求有效,但是需要進行刷新,那麼需要丟進網絡請求隊列中
                     // Soft-expired cache hit. We can deliver the cached response,
                     // but we need to also send the request to the network for
                     // refreshing.
                     request.addMarker("cache-hit-refresh-needed");
                     request.setCacheEntry(entry);

                     // Mark the response as intermediate.
                     response.intermediate = true;

                     // Post the intermediate response back to the user and have
                     // the delivery then forward the request along to the network.
                     mDelivery.postResponse(request, response, new Runnable() {
                         @Override
                         public void run() {
                             try {
                                 mNetworkQueue.put(request);
                             } catch (InterruptedException e) {
                                 // Not much we can do about this.
                             }
                         }
                     });
                 }

             } catch (InterruptedException e) {
                 // We may have been interrupted because it was time to quit.
                 if (mQuit) {
                     return;
                 }
                 continue;
             }
         }
     }

CacheDispatcher做了很多事情,之後再來慢慢的消化他們。現在先看一下我們的請求通過add之後到了哪裡去。查看RequestQueue.java的add方法:

     /**
      * Adds a Request to the dispatch queue.
      * @param request The request to service
      * @return The passed-in request
      */
     public  Request add(Request request) {
         // Tag the request as belonging to this queue and add it to the set of current requests.
         request.setRequestQueue(this);
         synchronized (mCurrentRequests) {
             mCurrentRequests.add(request); //加入到當前的隊列中,是一個HashSet
         }

         // Process requests in the order they are added.
         request.setSequence(getSequenceNumber());
         request.addMarker("add-to-queue");

         // If the request is uncacheable, skip the cache queue and go straight to the network.若這個請求不需要被緩存,需要直接做網絡請求,那麼就直接加到網絡請求隊列中
         if (!request.shouldCache()) {
             mNetworkQueue.add(request);
             return request;
         }

         // Insert request into stage if there's already a request with the same cache key in flight.
         synchronized (mWaitingRequests) {
             String cacheKey = request.getCacheKey(); // Volley中使用請求的URL作為存儲的key
             if (mWaitingRequests.containsKey(cacheKey)) { //若等待的請求中有與所請求的URL相同的請求,則需要做層級處理
                 // There is already a request in flight. Queue up.
                 Queue> stagedRequests = mWaitingRequests.get(cacheKey);
                 if (stagedRequests == null) {
                     stagedRequests = new LinkedList>();
                 }
                 stagedRequests.add(request);
                 mWaitingRequests.put(cacheKey, stagedRequests); //若與已有的請求URL相同,則創建一個層級列表保存他們,然後再放入等待請求列表中
                 if (VolleyLog.DEBUG) {
                     VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
                 }
             } else {
                 // Insert 'null' queue for this cacheKey, indicating there is now a request in
                 // flight.
                 mWaitingRequests.put(cacheKey, null); //若是一個全新的請求,則直接放入等待隊列中,注意數據為null,只有多個url產生層級關系了才有數據
                 mCacheQueue.add(request); //放入緩存隊列中,緩存隊列會對請求做處理
             }
             return request;
         }
     }

這裡的mCacheQueue就是放入CacheDispatcher的那個阻塞隊列,所以在add中添加到mCacheQueue後,因為CacheDispatcher已經運行起來了,所以CacheDispatcher會對剛剛加入的網絡請求做處理。分析到這裡,可以進行一下階段性的梳理:

1. 我們的請求在加入到RequestQueue後,首先會加入到其實體類的mCurrentRequests列表中做本地管理

2. 如果之前已經存在了和本次請求相同URL的請求,那麼會將層級關系保存在mWaitingRequests中,若沒有則層級關系為null,同樣也會保存在mWaitingRequests中

3. 對於沒有層級關系(新的URL)的網絡請求會直接放入mCacheQueue中讓CacheDispatcher對其進行處理

分析到這裡發現對於同一個URL的請求處理比較特殊,當第一次做某個網絡請求A時候,A會直接放入緩存隊列中由CacheDispatcher進行處理。下一次進行同一個URL的請求B時,若此時A還存在於mWaitingRequests隊列中則B的請求被雪藏,不放入mCacheQueue緩存隊列進行處理,只是等待。那麼等待到什麼時候呢?不難猜想到是需要等待A的請求完畢後才可以進行B的請求。歸結到底就是需要知道mWaitingRequest是如何運作的?什麼時候存儲在其中的層級結構才會被拿出來進行請求。暫時記下這個問題,現在回頭再去繼續分析CacheDispatcher。CacheDispatcher對請求的處理可以歸結為以下幾種情況:


1. 對於取消的請求,直接表示為完成並跳過;

2. 對於尚未有應答數據的、數據過期、有明顯標示需要刷新的請求直接丟入mNetworkQueue,mNetworkQueue同mCacheQueue一樣,是一個阻塞隊列;

3. 對於有應答數據且數據尚未過期的請求會出發Request的parseNetworkResponse方法進行數據解析,這個方法可以通過繼承Request類進行復寫(定制);

4. 對於有效應答(無論是否需要更新)都會用mDelivery進行應答,需要刷新的請求則會再次放入到mNetworkQueue中去。

對於(1)暫不做分析,後邊會遇到。下邊分析一下mNetworkQueue的運作原理,mNetworkQueue是在CacheDispatcher構造時傳入的參數,通過RequestQueue的start()方法不難分析出相對應的處理器為NetworkDispatcher。


NetworkDispatcher網絡處理

在RequestQueue的start()方法中,NetworkDispatcher存在多個,其數量等於RequestQueue構造時候傳入的網絡處理線程數量相等,默認為4個。

    public void start() {
        stop();  // Make sure any currently running dispatchers are stopped.
        // Create the cache dispatcher and start it.
        mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
        mCacheDispatcher.start();

        // Create network dispatchers (and corresponding threads) up to the pool size.
        for (int i = 0; i < mDispatchers.length; i++) {
            NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                    mCache, mDelivery);
            mDispatchers[i] = networkDispatcher;
            networkDispatcher.start();
        }
    }

每一個dispatcher被創造後都及時進行了start()操作,而NetworkDispatcher也是繼承於Thread的類,那麼之後需要分析其復寫的run方法,在這之前先看一下它的構造方法:

    public NetworkDispatcher(BlockingQueue> queue,
            Network network, Cache cache,
            ResponseDelivery delivery) {
        mQueue = queue;
        mNetwork = network;
        mCache = cache;
        mDelivery = delivery;
    }
mQueue即為mNetworkQueue,這與CacheDispatcher中使用到的是同一個。而mNetwork默認是BasicNetwork,mCache為緩存,mDelivery為最終的消息配發者,之後會分析到。接下來看其復寫的run()方法:

    @Override
    public void run() {
        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND); //設置線程可後台運行,不會因為系統休眠而掛起
        Request request;
        while (true) {
            try {
                // Take a request from the queue.
                request = mQueue.take(); //mQueue即為mNetworkQueue,從mNetworkQueue中獲取請求,也就是說CacheDispatcher丟過來的請求是從這裡被NetworkDispatcher獲取到的。注意這裡獲取請求是阻塞的。
            } catch (InterruptedException e) { //退出操作,NetworkDispatcher被設置成退出時候發出中斷請求
                // We may have been interrupted because it was time to quit.
                if (mQuit) {
                    return;
                }
                continue;
            }

            try {
                request.addMarker("network-queue-take");

                // If the request was cancelled already, do not perform the
                // network request.
                if (request.isCanceled()) { //若請求已經被取消,則標記為完成(被取消),然後繼續下一個請求
                    request.finish("network-discard-cancelled");
                    continue;
                }

                addTrafficStatsTag(request);

                // Perform the network request.
                NetworkResponse networkResponse = mNetwork.performRequest(request); //使用BasicNetwork處理請求
                request.addMarker("network-http-complete");

                // If the server returned 304 AND we delivered a response already,
                // we're done -- don't deliver a second identical response.
                if (networkResponse.notModified && request.hasHadResponseDelivered()) {
                    request.finish("not-modified");
                    continue;
                }

                // Parse the response here on the worker thread.
                Response response = request.parseNetworkResponse(networkResponse); //處理網絡請求應答數據
                request.addMarker("network-parse-complete");

                // Write to cache if applicable.
                // TODO: Only update cache metadata instead of entire record for 304s.
                if (request.shouldCache() && response.cacheEntry != null) {
                    mCache.put(request.getCacheKey(), response.cacheEntry);
                    request.addMarker("network-cache-written");
                }

                // Post the response back.
                request.markDelivered(); //標記請求為已應答並做消息分發處理
                mDelivery.postResponse(request, response);
            } catch (VolleyError volleyError) {
                parseAndDeliverNetworkError(request, volleyError); //若產生Volley錯誤則會觸發Request的parseNetworkError方法以及mDelivery的postError方法
            } catch (Exception e) {
                VolleyLog.e(e, "Unhandled exception %s", e.toString());
                mDelivery.postError(request, new VolleyError(e)); //對於未知錯誤,只會觸發mDelivery的postError方法。
            }
        }
    }

mNetwork.performRequest是真正的網絡請求實施的地方,這裡對BasicNetwork不做分析。網絡請求的回應是NetworkResponse類型,看一下這個類型是怎麼樣的:

/**
  * Data and headers returned from {@link Network#performRequest(Request)}.
  */
 public class NetworkResponse {
     /**
      * Creates a new network response.
      * @param statusCode the HTTP status code
      * @param data Response body
      * @param headers Headers returned with this response, or null for none
      * @param notModified True if the server returned a 304 and the data was already in cache
      */
     public NetworkResponse(int statusCode, byte[] data, Map headers,
             boolean notModified) {
         this.statusCode = statusCode;
         this.data = data;
         this.headers = headers;
         this.notModified = notModified;
     }

     public NetworkResponse(byte[] data) {
         this(HttpStatus.SC_OK, data, Collections.emptyMap(), false);
     }

     public NetworkResponse(byte[] data, Map headers) {
         this(HttpStatus.SC_OK, data, headers, false);
     }

     /** The HTTP status code. */
     public final int statusCode;

     /** Raw data from this response. */
     public final byte[] data;

     /** Response headers. */
     public final Map headers;

     /** True if the server returned a 304 (Not Modified). */
     public final boolean notModified;
 }
NetworkResponse保存了請求的回應數據,包括數據本身和頭,還有狀態碼以及其他相關信息。根據請求類型的不同,對回應數據的處理方式也各有不同,例如回應是String和Json的區別。所以自然而然的網絡請求類型需要對它獲得的回應數據自行處理,也就觸發了Request子類的parseNetworkResponse方法,下邊以StringRequest為例進行分析:

     @Override
     protected Response parseNetworkResponse(NetworkResponse response) {
         String parsed;
         try {
             parsed = new String(response.data, HttpHeaderParser.parseCharset(response.headers));
         } catch (UnsupportedEncodingException e) {
             parsed = new String(response.data);
         }
         return Response.success(parsed, HttpHeaderParser.parseCacheHeaders(response));
     }
StringRequest中對於回應首先嘗試解析數據和辨別頭數據編碼類型,若失敗則只解析數據部分。最終都是觸發Request的success方法,參數中還使用Volley自帶的HttpHeaderParser對頭信息進行了解析。需要看一下Response的success方法究竟做了什麼,鑒於Response類總共沒有多少代碼,就全部拿出來做分析了:

 public class Response {

     /** 處理解析過的回應信息的回調接口 */
     public interface Listener {
         /** 當接收到回應後 */
         public void onResponse(T response);
     }

     /** 處理錯誤回應的回調接口 */
     public interface ErrorListener {
         /**
          * 錯誤發生時的回調接口
          */
         public void onErrorResponse(VolleyError error);
     }

     /** 返回一個包含已解析結果的成功回應 */
     public static  Response success(T result, Cache.Entry cacheEntry) {
         return new Response(result, cacheEntry);
     }

     /**
      * 返回錯誤回應,包含錯誤碼以及可能的其他消息
      */
     public static  Response error(VolleyError error) {
         return new Response(error);
     }

     /** 解析過的響應信息,錯誤時為null */
     public final T result;

     /** 響應的緩存數據,錯誤時為null */
     public final Cache.Entry cacheEntry;

     /** 詳細的錯誤信息 */
     public final VolleyError error;

     /** 此回應軟件希望得到第二次回應則為true,即需要刷新 */
     public boolean intermediate = false;

     /**
      * 返回true代表回應成功,沒有錯誤。有錯誤則為false
      */
     public boolean isSuccess() {
         return error == null;
     }


     private Response(T result, Cache.Entry cacheEntry) {
         this.result = result;
         this.cacheEntry = cacheEntry;
         this.error = null;
     }

     private Response(VolleyError error) {
         this.result = null;
         this.cacheEntry = null;
         this.error = error;
     }
 }
這就是網絡響應的類,很簡單,成功或錯誤都會直接進行標記,通過isSuccess接口提供外部查詢。如果響應成功,則消息保存在result中,解析頭信息得到的緩存數據保存在cacheEntry中。

Request作為基類,Volley自帶的又代表性的其擴展類又StringRequest和JsonObjectRequest,如果開發者有比較大的自定義需求就需要繼承Request復寫內部一些重要的方法。同時mDelivery出場的機會這麼多,為什麼他總出現在處理請求的地方呢?下邊就對它和Request一起進行分析,其中Request依然以StringRequest為例。

ExecutorDelivery消息分發者與Request請求

mDelivery類型為ResponseDelivery,實為接口類型:

public interface ResponseDelivery {
    /**
     * Parses a response from the network or cache and delivers it.
     */
    public void postResponse(Request request, Response response);

    /**
     * Parses a response from the network or cache and delivers it. The provided
     * Runnable will be executed after delivery.
     */
    public void postResponse(Request request, Response response, Runnable runnable);

    /**
     * Posts an error for the given request.
     */
    public void postError(Request request, VolleyError error);
}

三個接口其中兩個是回應網絡應答的,最後一個回應網絡錯誤。追溯RequestQueue構造的時候,默認的分發者為ExecutorDelivery:

     public RequestQueue(Cache cache, Network network, int threadPoolSize) {
         this(cache, network, threadPoolSize,
                 new ExecutorDelivery(new Handler(Looper.getMainLooper())));
     }

可見,消息分發者工作在主線程上。常見的分發者所做的工作有:

     @Override
     public void postResponse(Request request, Response response) { //發出響應
         postResponse(request, response, null);
     }

     @Override
     public void postResponse(Request request, Response response, Runnable runnable) { //發出響應
         request.markDelivered();
         request.addMarker("post-response");
         mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
     }

     @Override
     public void postError(Request request, VolleyError error) { //發出錯誤響應
         request.addMarker("post-error");
         Response response = Response.error(error);
         mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, null));
     }
這裡發現一個問題,其實在NetworkDispatcher中的request.markDelivered()是多余的,在postResponse中已經執行了。無論是正常的響應還是錯誤都會執行ResponseDeliveryRunnable:

private class ResponseDeliveryRunnable implements Runnable {
         private final Request mRequest;
         private final Response mResponse;
         private final Runnable mRunnable;

         public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {
             mRequest = request;
             mResponse = response;
             mRunnable = runnable; //若指定了runnable,如上面分析的在網絡請求有效但是需要更新的時候會指定一個runnable的
         }

         @SuppressWarnings("unchecked")
         @Override
         public void run() {
             // If this request has canceled, finish it and don't deliver.
             if (mRequest.isCanceled()) { //若請求被取消,結束並做標記
                 mRequest.finish("canceled-at-delivery");
                 return;
             }

             // Deliver a normal response or error, depending.
             if (mResponse.isSuccess()) { //若請求成功則處理回應
                 mRequest.deliverResponse(mResponse.result);
             } else {  //若不成功則處理錯誤
                 mRequest.deliverError(mResponse.error);
             }

             // If this is an intermediate response, add a marker, otherwise we're done
             // and the request can be finished.
             if (mResponse.intermediate) {
                 mRequest.addMarker("intermediate-response");
             } else {
                 mRequest.finish("done");
             }

             // If we have been provided a post-delivery runnable, run it.
             if (mRunnable != null) { //如果指定了額外的runnable這裡還會對它進行執行
                 mRunnable.run();
             }
        }
     }

Delivery作為網絡回應的分發、處理者,對回應數據進行了最後一層的把關。而當Delivery查詢回應是否成功時,因為Request已經對回應信息做過處理(檢查其成功還是錯誤),所以可以查詢到正確的狀態。若查詢到回應成功則會觸發Request的deliverResponse方法(以StringRequest為例):

     @Override
     protected void deliverResponse(String response) {
         mListener.onResponse(response);
     }
其實就是觸發了用戶自定義的網絡響應監聽器,mListener在StringRequest的構造中進行賦值:

     public StringRequest(int method, String url, Listener listener,
             ErrorListener errorListener) {
         super(method, url, errorListener);
         mListener = listener;
     }

     public StringRequest(String url, Listener listener, ErrorListener errorListener) {
         this(Method.GET, url, listener, errorListener);
     }
當查詢到網絡回應數據不成功時候將觸發Request的deliverError方法,這個方法StringRequest並沒有復寫,所以追溯到其父類Request中:

     public void deliverError(VolleyError error) {
         if (mErrorListener != null) {
             mErrorListener.onErrorResponse(error);
         }
     }
這裡mErrorListener也是用戶在使用Volley時候自定的錯誤監聽器,在StringRequest中並沒有處理,是通過super執行Request的構造方法進行賦值的:

     public Request(int method, String url, Response.ErrorListener listener) {
         mMethod = method;
         mUrl = url;
         mErrorListener = listener;
         setRetryPolicy(new DefaultRetryPolicy());

         mDefaultTrafficStatsTag = findDefaultTrafficStatsTag(url);
     }
當這個請求已經完整的確定完成後,Delivery會通知Request進行結束操作——finish:

     void finish(final String tag) {
         if (mRequestQueue != null) { //若請求隊列有效,則在請求隊列中標記當前請求為結束
             mRequestQueue.finish(this);
         }  //之後都是日志相關,不做分析
         if (MarkerLog.ENABLED) {
             final long threadId = Thread.currentThread().getId();
             if (Looper.myLooper() != Looper.getMainLooper()) {
                 // If we finish marking off of the main thread, we need to
                 // actually do it on the main thread to ensure correct ordering.
                 Handler mainThread = new Handler(Looper.getMainLooper());
                 mainThread.post(new Runnable() {
                     @Override
                     public void run() {
                         mEventLog.add(tag, threadId);
                         mEventLog.finish(this.toString());
                     }
                 });
                 return;
             }

             mEventLog.add(tag, threadId);
             mEventLog.finish(this.toString());
         } else {
             long requestTime = SystemClock.elapsedRealtime() - mRequestBirthTime;
             if (requestTime >= SLOW_REQUEST_THRESHOLD_MS) {
                 VolleyLog.d("%d ms: %s", requestTime, this.toString());
             }
         }
     }

mRequestQueue為RequestQueue類型,在開篇中就分析了RequestQueue,相關的還有一個問題當時沒有進行挖掘,即mWaitingQueue中保留的相同URL的多個請求層級何時才能夠被觸發,下邊分析mRequestQueue的finish方法就能解開這個疑問了:

     void finish(Request request) {
         // Remove from the set of requests currently being processed.
         synchronized (mCurrentRequests) {
             mCurrentRequests.remove(request); //當請求已完成,會從mCurrentRequests隊列中被移除掉
         }

         if (request.shouldCache()) { //默認是true的,除非你調用Request的setShouldCache方法主動設定
             synchronized (mWaitingRequests) {
                 String cacheKey = request.getCacheKey(); //獲取cacheKey,前邊說過就是URL
                 Queue> waitingRequests = mWaitingRequests.remove(cacheKey); //移除列表中的這個請求,同時取出其可能存在的層級關系
                 if (waitingRequests != null) {
                     if (VolleyLog.DEBUG) {
                         VolleyLog.v("Releasing %d waiting requests for cacheKey=%s.",
                                 waitingRequests.size(), cacheKey);
                     }
                     // Process all queued up requests. They won't be considered as in flight, but
                     // that's not a problem as the cache has been primed by 'request'.
                     mCacheQueue.addAll(waitingRequests); //若真的有層級關系,那麼將其他的請求全部加入到mCacheQueue中交由CacheDispatcher處理
                 }
             }
         }
     }
好了,最終待定的問題也解決了,這就是一個Request網絡請求在Volley中的來龍去脈。


總結


1. 當一個RequestQueue被成功申請後會開啟一個CacheDispatcher(緩存調度器)和4個(默認)NetworkDispatcher(網絡請求調度器);

2. CacheDispatcher緩存調度器最為第一層緩沖,開始工作後阻塞的從緩存序列mCacheQueue中取得請求:

a. 對於已經取消了的請求,直接標記為跳過並結束這個請求

b. 全新或過期的請求,直接丟入mNetworkQueue中交由N個NetworkDispatcher進行處理

c. 已獲得緩存信息(網絡應答)卻沒有過期的請求,交由Request的parseNetworkResponse進行解析,從而確定此應答是否成功。然後將請求和應答交由Delivery分發者進行處理,如果需要更新緩存那麼該請求還會被放入mNetworkQueue中

3. 用戶將請求Request add到RequestQueue之後:

a. 對於不需要緩存的請求(需要額外設置,默認是需要緩存)直接丟入mNetworkQueue交由N個NetworkDispatcher處理;

b. 對於需要緩存的,全新的請求加入到mCacheQueue中給CacheDispatcher處理

c. 需要緩存,但是緩存列表中已經存在了相同URL的請求,放在mWaitingQueue中做暫時雪藏,待之前的請求完畢後,再重新添加到mCacheQueue中;

4. 網絡請求調度器NetworkDispatcher作為網絡請求真實發生的地方,對消息交給BasicNetwork進行處理,同樣的,請求和結果都交由Delivery分發者進行處理;

5. Delivery分發者實際上已經是對網絡請求處理的最後一層了,在Delivery對請求處理之前,Request已經對網絡應答進行過解析,此時應答成功與否已經設定。而後Delivery根據請求所獲得的應答情況做不同處理:

a. 若應答成功,則觸發deliverResponse方法,最終會觸發開發者為Request設定的Listener

b. 若應答失敗,則觸發deliverError方法,最終會觸發開發者為Request設定的ErrorListener

處理完後,一個Request的生命周期就結束了,Delivery會調用Request的finish操作,將其從mRequestQueue中移除,與此同時,如果等待列表中存在相同URL的請求,則會將剩余的層級請求全部丟入mCacheQueue交由CacheDispatcher進行處理。


一個Request的生命周期:

1. 通過add加入mRequestQueue中,等待請求被執行;

2. 請求執行後,調用自身的parseNetworkResponse對網絡應答進行處理,並判斷這個應答是否成功;

3. 若成功,則最終會觸發自身被開發者設定的Listener;若失敗,最終會觸發自身被開發者設定的ErrorListener。


至此Volley中網絡請求的來龍去脈分析清楚了,如果我們因為一些原因需要繼承Request來自定義自己的Request,最需要注意的就是parseNetworkResponse方法的復寫,此方法對請求之後的命運有決定性的作用。

  1. 上一頁:
  2. 下一頁:
熱門文章
閱讀排行版
Copyright © Android教程網 All Rights Reserved